Bibliography

References

[ARaifmmodecheckcelsecfiiifmmodebaruelseufinasS+16]E. Anisimovas, M. Ra\ifmmode \check c\else č\fi i\ifmmode \bar u\else  ū\fi nas, C. Sträter, A. Eckardt, I. B. Spielman, and G. Juzeli\ifmmode \bar u\else  ū\fi nas. Semisynthetic zigzag optical lattice for ultracold bosons. Phys. Rev. A, 94:063632, Dec 2016. URL: http://link.aps.org/doi/10.1103/PhysRevA.94.063632, doi:10.1103/PhysRevA.94.063632.
[BDZ17]Filipe F. Bellotti, Amin S. Dehkharghani, and Nikolaj T. Zinner. Comparing numerical and analytical approaches to strongly interacting two-component mixtures in one dimensional traps. The European Physical Journal D, 71(2):37, 2017. URL: http://dx.doi.org/10.1140/epjd/e2017-70650-8, doi:10.1140/epjd/e2017-70650-8.
[DKT16]A. Dhar, J. J. Kinnunen, and P. Törmä. Population imbalance in the extended fermi-hubbard model. Phys. Rev. B, 94:075116, Aug 2016. URL: http://link.aps.org/doi/10.1103/PhysRevB.94.075116, doi:10.1103/PhysRevB.94.075116.
[DBK+14]Michele Dolfi, Bela Bauer, Sebastian Keller, Alexandr Kosenkov, Timothée Ewart, Adrian Kantian, Thierry Giamarchi, and Matthias Troyer. Matrix product state applications for the \ALPS\ project. Computer Physics Communications, 185(12):3430 – 3440, 2014. URL: http://www.sciencedirect.com/science/article/pii/S0010465514003002, doi:http://dx.doi.org/10.1016/j.cpc.2014.08.019.
[EV09]G. Evenbly and G. Vidal. Entanglement Renormalization in Two Spatial Dimensions. Phys. Rev. Lett., 102(18):180406, May 2009. doi:10.1103/PhysRevLett.102.180406.
[GMH+16a]Z.-X. Gong, M. F. Maghrebi, A. Hu, M. Foss-Feig, P. Richerme, C. Monroe, and A. V. Gorshkov. Kaleidoscope of quantum phases in a long-range interacting spin-1 chain. Phys. Rev. B, 93:205115, May 2016. URL: http://link.aps.org/doi/10.1103/PhysRevB.93.205115, doi:10.1103/PhysRevB.93.205115.
[GMH+16b]Z.-X. Gong, M. F. Maghrebi, A. Hu, M. L. Wall, M. Foss-Feig, and A. V. Gorshkov. Topological phases with long-range interactions. Phys. Rev. B, 93:041102, Jan 2016. URL: http://link.aps.org/doi/10.1103/PhysRevB.93.041102, doi:10.1103/PhysRevB.93.041102.
[HLO+16]Jutho Haegeman, Christian Lubich, Ivan Oseledets, Bart Vandereycken, and Frank Verstraete. Unifying time evolution and optimization with matrix product states. Phys. Rev. B, 94:165116, Oct 2016. URL: http://link.aps.org/doi/10.1103/PhysRevB.94.165116, doi:10.1103/PhysRevB.94.165116.
[KWMR16]Andrew P. Koller, Michael L. Wall, Josh Mundinger, and Ana Maria Rey. Dynamics of interacting fermions in spin-dependent potentials. Phys. Rev. Lett., 117:195302, Nov 2016. URL: http://link.aps.org/doi/10.1103/PhysRevLett.117.195302, doi:10.1103/PhysRevLett.117.195302.
[PO56]Oliver Penrose and Lars Onsager. Bose-einstein condensation and liquid helium. Phys. Rev., 104:576–584, Nov 1956. URL: http://link.aps.org/doi/10.1103/PhysRev.104.576, doi:10.1103/PhysRev.104.576.
[RT16]Angelo Russomanno and Emanuele G. Dalla Torre. Kibble-zurek scaling in periodically driven quantum systems. EPL (Europhysics Letters), 115(3):30006, 2016. URL: http://stacks.iop.org/0295-5075/115/i = 3/a = 30006.
[Schollwock11]U Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, pages 118, aug 2011. arXiv:1008.3477, doi:10.1016/j.aop.2010.09.012.
[SDV06]Y.-Y. Shi, L.-M. Duan, and G. Vidal. Classical simulation of quantum many-body systems with a tree tensor network. Phys. Rev. A, 74:022320, Aug 2006. URL: http://link.aps.org/doi/10.1103/PhysRevA.74.022320, doi:10.1103/PhysRevA.74.022320.
[Sid98]R. B. Sidje. EXPOKIT. A Software Package for Computing Matrix Exponentials. ACM Trans. Math. Softw., 24(1):130–156, 1998.
[SS99]A. T. Sornborger and E. D. Stewart. Higher-order methods for simulations on quantum computers. Phys. Rev. A, 60:1956–1965, Sep 1999. URL: http://link.aps.org/doi/10.1103/PhysRevA.60.1956, doi:10.1103/PhysRevA.60.1956.
[VC04]F. Verstraete and J. I. Cirac. Renormalization algorithms for Quantum Many-Body systems in two and higher dimensions. arXiv:cond-mat/0407066v1, 2004.
[VMC08]F. Verstraete, V. Murg, and J.I. Cirac. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Advances in Physics, 57(2):143–224, 2008. URL: http://www.tandfonline.com/doi/abs/10.1080/14789940801912366, arXiv:http://www.tandfonline.com/doi/pdf/10.1080/14789940801912366, doi:10.1080/14789940801912366.
[Vid07]G. Vidal. Entanglement Renormalization. Phys. Rev. Lett., 99:220405, 2007.
[WC13]M L Wall and L D Carr. Dipole–dipole interactions in optical lattices do not follow an inverse cube power law. New Journal of Physics, 15(12):123005, 2013. URL: http://stacks.iop.org/1367-2630/15/i=12/a=123005.
[WC12]M L Wall and Lincoln D Carr. Out-of-equilibrium dynamics with matrix product states. New Journal of Physics, 14(12):125015, 2012. URL: http://stacks.iop.org/1367-2630/14/i=12/a=125015.
[WBC13]M. L. Wall, Erman Bekaroglu, and Lincoln D. Carr. Molecular hubbard hamiltonian: field regimes and molecular species. Phys. Rev. A, 88:023605, Aug 2013. URL: http://link.aps.org/doi/10.1103/PhysRevA.88.023605, doi:10.1103/PhysRevA.88.023605.
[Wei14]Hendrik Weimer. String order in dipole-blockaded quantum liquids. New Journal of Physics, 16(9):093040, 2014. URL: http://stacks.iop.org/1367-2630/16/i=9/a=093040.
[ZMK+15]Michael P. Zaletel, Roger S. K. Mong, Christoph Karrasch, Joel E. Moore, and Frank Pollmann. Time-evolving a matrix product state with long-ranged interactions. Phys. Rev. B, 91:165112, Apr 2015. URL: http://link.aps.org/doi/10.1103/PhysRevB.91.165112, doi:10.1103/PhysRevB.91.165112.
[GardasDziarmagaZurek16]B. Gardas, J. Dziarmaga, and W. H. Zurek. Quench in the 1D Bose-Hubbard model. ArXiv e-prints, dec 2016. arXiv:1612.05084.
[JaschkeMaedaWhalen+16]D. Jaschke, K. Maeda, J. D. Whalen, M. L. Wall, and L. D. Carr. Critical Phenomena and Kibble-Zurek Scaling in the Long-Range Quantum Ising Chain. ArXiv e-prints 1612.07437, dec 2016. arXiv:1612.07437.
[MaghrebiGongGorshkov15]M. F. Maghrebi, Z.-X. Gong, and A. V. Gorshkov. Continuous symmetry breaking and a new universality class in 1D long-range interacting quantum systems. ArXiv e-prints, oct 2015. arXiv:1510.01325.
[McCulloch08]I. P. McCulloch. Infinite size density matrix renormalization group, revisited. ArXiv e-prints 0804.2509, apr 2008. arXiv:0804.2509.
[VargasCarr15]D. L. Vargas and L. D. Carr. Detecting Quantum Phase Transitions via Mutual Information Complex Networks. ArXiv e-prints, aug 2015. arXiv:1508.07041.