Bibliography¶
References
- ARaifmmodecheckcelsevcfiiifmmodebaruelseufinasStrater+16
E. Anisimovas, M. Ra\ifmmode \check c\else č\fi i\ifmmode \bar u\else ū\fi nas, C. Sträter, A. Eckardt, I. B. Spielman, and G. Juzeli\ifmmode \bar u\else ū\fi nas. Semisynthetic zigzag optical lattice for ultracold bosons. Phys. Rev. A, 94:063632, Dec 2016. URL: http://link.aps.org/doi/10.1103/PhysRevA.94.063632, doi:10.1103/PhysRevA.94.063632.
- BDZ17
Filipe F. Bellotti, Amin S. Dehkharghani, and Nikolaj T. Zinner. Comparing numerical and analytical approaches to strongly interacting two-component mixtures in one dimensional traps. The European Physical Journal D, 71(2):37, 2017. URL: http://dx.doi.org/10.1140/epjd/e2017-70650-8, doi:10.1140/epjd/e2017-70650-8.
- DKTorma16
A. Dhar, J. J. Kinnunen, and P. Törmä. Population imbalance in the extended fermi-hubbard model. Phys. Rev. B, 94:075116, Aug 2016. URL: http://link.aps.org/doi/10.1103/PhysRevB.94.075116, doi:10.1103/PhysRevB.94.075116.
- DTormaK18
A. Dhar, P. Törmä, and J. J. Kinnunen. Fast trimers in a one-dimensional extended fermi-hubbard model. Phys. Rev. A, 97:043624, Apr 2018. URL: https://link.aps.org/doi/10.1103/PhysRevA.97.043624, doi:10.1103/PhysRevA.97.043624.
- DLemarieCL17
Elmer V. H. Doggen, Gabriel Lemarié, Sylvain Capponi, and Nicolas Laflorencie. Weak- versus strong-disorder superfluid—bose glass transition in one dimension. Phys. Rev. B, 96:180202, Nov 2017. URL: https://link.aps.org/doi/10.1103/PhysRevB.96.180202, doi:10.1103/PhysRevB.96.180202.
- DBK+14
Michele Dolfi, Bela Bauer, Sebastian Keller, Alexandr Kosenkov, Timothée Ewart, Adrian Kantian, Thierry Giamarchi, and Matthias Troyer. Matrix product state applications for the \ALPS\ project. Computer Physics Communications, 185(12):3430 – 3440, 2014. URL: http://www.sciencedirect.com/science/article/pii/S0010465514003002, doi:http://dx.doi.org/10.1016/j.cpc.2014.08.019.
- EV09
G. Evenbly and G. Vidal. Entanglement Renormalization in Two Spatial Dimensions. Phys. Rev. Lett., 102(18):180406, May 2009. doi:10.1103/PhysRevLett.102.180406.
- GDZ17
Bartłomiej Gardas, Jacek Dziarmaga, and Wojciech H. Zurek. Dynamics of the quantum phase transition in the one-dimensional bose-hubbard model: excitations and correlations induced by a quench. Phys. Rev. B, 95:104306, Mar 2017. URL: https://link.aps.org/doi/10.1103/PhysRevB.95.104306, doi:10.1103/PhysRevB.95.104306.
- GMH+16a
Z.-X. Gong, M. F. Maghrebi, A. Hu, M. Foss-Feig, P. Richerme, C. Monroe, and A. V. Gorshkov. Kaleidoscope of quantum phases in a long-range interacting spin-1 chain. Phys. Rev. B, 93:205115, May 2016. URL: http://link.aps.org/doi/10.1103/PhysRevB.93.205115, doi:10.1103/PhysRevB.93.205115.
- GMH+16b
Z.-X. Gong, M. F. Maghrebi, A. Hu, M. L. Wall, M. Foss-Feig, and A. V. Gorshkov. Topological phases with long-range interactions. Phys. Rev. B, 93:041102, Jan 2016. URL: http://link.aps.org/doi/10.1103/PhysRevB.93.041102, doi:10.1103/PhysRevB.93.041102.
- HLO+16
Jutho Haegeman, Christian Lubich, Ivan Oseledets, Bart Vandereycken, and Frank Verstraete. Unifying time evolution and optimization with matrix product states. Phys. Rev. B, 94:165116, Oct 2016. URL: http://link.aps.org/doi/10.1103/PhysRevB.94.165116, doi:10.1103/PhysRevB.94.165116.
- JMW+17
Daniel Jaschke, Kenji Maeda, Joseph D Whalen, Michael L Wall, and Lincoln D Carr. Critical phenomena and kibble–zurek scaling in the long-range quantum ising chain. New Journal of Physics, 19(3):033032, 2017. URL: http://stacks.iop.org/1367-2630/19/i=3/a=033032.
- JWC18
Daniel Jaschke, Michael L. Wall, and Lincoln D. Carr. Open source matrix product states: opening ways to simulate entangled many-body quantum systems in one dimension. Computer Physics Communications, 225:59 – 91, 2018. URL: http://www.sciencedirect.com/science/article/pii/S0010465517304204, doi:10.1016/j.cpc.2017.12.015.
- KWMR16
Andrew P. Koller, Michael L. Wall, Josh Mundinger, and Ana Maria Rey. Dynamics of interacting fermions in spin-dependent potentials. Phys. Rev. Lett., 117:195302, Nov 2016. URL: http://link.aps.org/doi/10.1103/PhysRevLett.117.195302, doi:10.1103/PhysRevLett.117.195302.
- MGG17
Mohammad F. Maghrebi, Zhe-Xuan Gong, and Alexey V. Gorshkov. Continuous symmetry breaking in 1d long-range interacting quantum systems. Phys. Rev. Lett., 119:023001, Jul 2017. URL: https://link.aps.org/doi/10.1103/PhysRevLett.119.023001, doi:10.1103/PhysRevLett.119.023001.
- RT16
Angelo Russomanno and Emanuele G. Dalla Torre. Kibble-zurek scaling in periodically driven quantum systems. EPL (Europhysics Letters), 115(3):30006, 2016. URL: http://stacks.iop.org/0295-5075/115/i = 3/a = 30006.
- Schollwock11
U Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, pages 118, aug 2011. arXiv:1008.3477, doi:10.1016/j.aop.2010.09.012.
- SDV06
Y.-Y. Shi, L.-M. Duan, and G. Vidal. Classical simulation of quantum many-body systems with a tree tensor network. Phys. Rev. A, 74:022320, Aug 2006. URL: http://link.aps.org/doi/10.1103/PhysRevA.74.022320, doi:10.1103/PhysRevA.74.022320.
- Sid98
R. B. Sidje. EXPOKIT. A Software Package for Computing Matrix Exponentials. ACM Trans. Math. Softw., 24(1):130–156, 1998.
- SS99
A. T. Sornborger and E. D. Stewart. Higher-order methods for simulations on quantum computers. Phys. Rev. A, 60:1956–1965, Sep 1999. URL: http://link.aps.org/doi/10.1103/PhysRevA.60.1956, doi:10.1103/PhysRevA.60.1956.
- SVCH18
Bhuvanesh Sundar, Marc Andrew Valdez, Lincoln D. Carr, and Kaden R. A. Hazzard. Complex-network description of thermal quantum states in the ising spin chain. Phys. Rev. A, 97:052320, May 2018. URL: https://link.aps.org/doi/10.1103/PhysRevA.97.052320, doi:10.1103/PhysRevA.97.052320.
- VJVC17
Marc Andrew Valdez, Daniel Jaschke, David L. Vargas, and Lincoln D. Carr. Quantifying complexity in quantum phase transitions via mutual information complex networks. Phys. Rev. Lett., 119:225301, Nov 2017. URL: https://link.aps.org/doi/10.1103/PhysRevLett.119.225301, doi:10.1103/PhysRevLett.119.225301.
- VC04
F. Verstraete and J. I. Cirac. Renormalization algorithms for Quantum Many-Body systems in two and higher dimensions. arXiv:cond-mat/0407066v1, 2004.
- VMC08
F. Verstraete, V. Murg, and J.I. Cirac. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Advances in Physics, 57(2):143–224, 2008. URL: http://www.tandfonline.com/doi/abs/10.1080/14789940801912366, arXiv:0907.2796, doi:10.1080/14789940801912366.
- Vid07
G. Vidal. Entanglement Renormalization. Phys. Rev. Lett., 99:220405, 2007.
- WaLDC13
M L Wall and and L D Carr. Dipole–dipole interactions in optical lattices do not follow an inverse cube power law. New Journal of Physics, 15(12):123005, 2013. URL: http://stacks.iop.org/1367-2630/15/i=12/a=123005.
- WC12
M L Wall and Lincoln D Carr. Out-of-equilibrium dynamics with matrix product states. New Journal of Physics, 14(12):125015, 2012. URL: http://stacks.iop.org/1367-2630/14/i=12/a=125015.
- WBC13
M. L. Wall, Erman Bekaroglu, and Lincoln D. Carr. Molecular hubbard hamiltonian: field regimes and molecular species. Phys. Rev. A, 88:023605, Aug 2013. URL: http://link.aps.org/doi/10.1103/PhysRevA.88.023605, doi:10.1103/PhysRevA.88.023605.
- Wei14
Hendrik Weimer. String order in dipole-blockaded quantum liquids. New Journal of Physics, 16(9):093040, 2014. URL: http://stacks.iop.org/1367-2630/16/i=9/a=093040.
- ZMK+15
Michael P. Zaletel, Roger S. K. Mong, Christoph Karrasch, Joel E. Moore, and Frank Pollmann. Time-evolving a matrix product state with long-ranged interactions. Phys. Rev. B, 91:165112, Apr 2015. URL: http://link.aps.org/doi/10.1103/PhysRevB.91.165112, doi:10.1103/PhysRevB.91.165112.
- JaschkeCarr18
D. Jaschke and L. D. Carr. Open source Matrix Product States: Exact diagonalization and other entanglement-accurate methods revisited in quantum systems. ArXiv 1802.10052, Feb 2018. URL: https://arxiv.org/abs/1802.10052.
- JaschkeMontangeroCarr18
D. Jaschke, S. Montangero, and L. D. Carr. One-dimensional many-body entangled open quantum systems with tensor network methods. ArXiv 1804.09796, Apr 2018. URL: https://arxiv.org/abs/1804.09796.
- McCulloch08
I. P. McCulloch. Infinite size density matrix renormalization group, revisited. ArXiv e-prints 0804.2509, apr 2008. arXiv:0804.2509.